The Modern Theatre of Anatomy – Martina Amato & Noushig Kadian

Understanding the Renaissance Body

When looking at the Renaissance we must keep in mind that the beliefs of the time differ from our understanding of the world today. In the next few paragraphs we will explore the Renaissance body, the pursuit of understanding anatomy and the theater of anatomy.

The Renaissance was a time of enlightenment and pursuit of knowledge. During the Renaissance the pursuit of knowledge of the anatomy gained importance. This pursuit saw no social boundaries; everyone, no matter their social standing, was intrigued and affected by this new exploration of the human body. As explained by Jonathan Sawday in The Body Emblazoned: “It is perhaps the very impossibility of gazing within our own bodies which makes the sight of the interior of other bodies so compelling. Denied direct experience of ourselves, we can only explore others in the hope that this other might also be us.”4 Unlike our purely scientific view of the anatomy today, cosmology, theology and theunderstanding of the soul were essential in the pursuit of anatomical research in the Renaissance.

Firstly, we will illustrate Renaissance beliefs of the body through the lens of cosmology. The stars were seen as the only regular and ordered system within nature. The rigor observed in the sky helped decipher the disorder of terrestrial life. Navigation, time, a person’s fate or health, are a few examples of human conditions depicted by the movement of the planets and the formation of the constellations. The stars contained the answers to our mortal questions. Furthermore, the significance of celestial movement extended to the Renaissance views on anatomy. The body was seen as a microcosm of the cosmos, encapsulating the regularity in the sky. For example, a doctor would refer to the zodiac signs to prescribe certain therapies to his patients whose fate and demeanor was predetermined by their constellation.

Secondly, the Renaissance body had a theological importance.  Such a complex and mysterious system, as that of the stars, must have been touched by a divine hand during their creation. The same deduction can be made about human anatomy, seeing as it is a microcosm of God’s work. This point is further illustrated by Sawday: “The human body expressed in miniature the divine workmanship of God, and that its form corresponded to the greater form of the macrocosm.”4 Viewing the body as a divine creation makes it a sacred entity. The pursuit of anatomical knowledge, through dissection, then becomes a religious ceremony. A poetic and lyrical ceremony surrounds these dissections with religious implications.

The Theater of Anatomy

An important moment in the Renaissance in terms of anatomical research was the modernity of Vesalius and his theater of anatomy. In the pre-Rennaissance, theories of anatomy were based on Galen, a Roman physician, and his discoveries. These theories were universally accepted and the dissection was meant to prove the written word. “Even when the text diverged from the body before them, that misinformed, though accepted text, was understood to be correct. The seemingly anomalous corpse was the recipient of the authorial word, and was made to exemplify it.”3 On the other hand, Vesalius viewed the body as a container of knowledge. He also believed the written word should not be used as an instruction manual when approaching dissection. In his theater he was both lecturer and dissector. “He read from the text, but more importantly he was able to revise the textual authority as the dissection disagreed with it.”3

Dissections were a means to gain knowledge and make new discoveries. As previously mentioned, the body was a mystical construct that required a sensitivity towards the lyrical arts in trying to understand it. This was a time when cause and effect was not the natural thought process, and could therefore not be used in the anatomical discoveries being made. “The body, despite all attempts at poetic deconstruction, was still secret”.4 The body was like a territory waiting to be concurred; a territory whose fruitful, lush ecosystems contained the secrets to cotton, spice, silk…Anatomists became explorers, and organs, their unchartered territory. Once an organ was discovered, the anatomist had the honor of naming his new found land (e.g. Gabriele Falloppio).1

Previously to Vesalius’ theater, public dissections were loud, carnivalesque gatherings. Vesalius’ modernity narrowed his audience to professors, students and other invited guests from the academic realm.  The audience adopted a code of conduct and decorum within the theater. Poetry and music were seamlessly integrated in the ceremony, creating an impactful instructive ambience. Vesalius’ theater was a tactile learning environment unlike previous anatomy theaters which relied on an auditory experience. Students were encouraged to actively participate by touching organs and feeling their inherent significance.

The Role of the Modern Anatomist

As we began our adventure with this final phase of the project, we decided to take a similar approach to the renaissance anatomist. The body of man for them was an emblem created by the hands of God. The body was a sacred mystery to which they could not comprehend systemically. The choice of dissecting a machine in our case became clear when we realized that although we are creators of machines, their mechanisms still remain mysterious. Exposing the innards of a body conjures up even more questions of its system rather than revealing the answers. Even in the day and age of the machine, their world is not as transparent as we assume.

By taking the machine apart, piece-by-piece, we begin to grasp an idea of the mechanism behind it and how it might function as a whole. One advantage of observing the machine alive was that we could potentially understand its mechanism when taken apart. Our projections demonstrate the machine in its living state until we symbolically “cut the cord.” Each piece was meticulously dismembered for individual observation. The entire process of the dissection took 30 minutes. Our presentation was the projection of films showing the machine functioning when it was alive juxtaposed with a film of its dissection and ultimate death. The internal organs were laid out on the death bed, against the backdrop of the projections.

Continue reading

The “Replication Box”

Le projet de recherche est issu d’une expérimentation à l’aide d’instruments de relevés inventés à la Renaissance. Il s’agit d’une suite logique des exercices sur la mesure et la cartographie effectuées dans le cadre de ce cours.

La plupart des instruments de mesures des arpenteurs de l’époque dépendent d’artifices mathématiques dont certains ont été résumés dans l’œuvre de Leon Battista Alberti, Ludi Mathematica. Dans cet ouvrage, il explique diverses astuces mathématiques relatives à l’art de la mesure. Suite à la reproduction de la carte de Rome d’Alberti en deuxième exercice, nous avons défini deux points d’intérêts pour le projet final : la numérisation des points du relevés d’Alberti est indépendante du support sur lequel le relevé a été fait; il est possible pour n’importe qui de reproduire cette carte peu importe sa taille, pourvu que l’instrument qu’il décrit soit reproduit consciencieusement. L’élément fascinant est que sans le savoir, Alberti utilisait un système d’analyse computationnel peu différent que le langage d’un ordinateur moderne. Deuxièmement, l’instrument utilisé par Alberti pour construire sa carte démontre à notre avis l’introduction d’un système de coordonnées polaires appliquées dans l’art de la mesure. Ce système allait définir le point de départ du projet.

 Le projet est né d’une recherche approfondie sur les divers instruments de mesure inventés par Alberti. Nous avons consulté tout d’abord les Ludi Mathematica afin de comprendre comment Alberti avait transposé les éléments remarquables de Rome en nuage de points mathématiques. Il s’avère qu’Alberti utilisait un instrument circulaire de grande dimension déposé sur le sol permettant d’établir à vue les angles des points d’intérêts par rapport au lieu de mesure. Au cours de nos recherches, nous avons lu attentivement le traité De Statua, où Alberti décrit un deuxième instrument de mesure inspiré du premier permettant de mesurer une statue. Alberti donne un système de proportion à son instrument dans la mesure où la hauteur de la statue est égale à 6 pieds. Il présente ensuite l’instrument de mesure, le finitorium. Il s’agit d’un instrument semblable à celui utilisé pour la carte de Rome, excepté qu’il implique maintenant une composante tridimensionnelle à son fonctionnement en la qualité d’un fil à plomb suspendu à son rayon. Ce dernier est de 3 pieds, chacun divisés en 10 uncia et subdivisées en minuta.

En utilisant l’instrument décrit par Alberti, de manière très imprécise disons-le, on comprend qu’il serait possible de diviser le contour de n’importe quel objet en coordonnées spatiales, qu’il serait ensuite possible de retracer sans la présence de l’objet de référence. Nous avons fait d’autres recherches à comprendre exactement le fonctionnement de cet instrument. Nous avons établi que sa reproduction exacte n’avait à notre connaissance jamais été tentée. Mathématiquement, ce sytème repose sur les coordonnées cylindriques où un point dans l’espace est défini par le rayon, l’angle dans le plan horizontal et z, la distance verticale. D’autre part, il s’avère que le principe d’Alberti a été effectivement utilisé par les sculpteurs afin de reproduire des statues. Le principe est le suivant : le sculpteur positionne deux ou trois points de référence majeurs (le coude, le genou, etc) par rapport au centre de l’axe vertical et sait ainsi la position de chaque point par rapport à l’épaisseur du bloc de matériel à tailler.

Le projet final se veut une hybridation des différents principes de mesure inventés par Alberti. Nous avons voulu modifier l’instrument afin de le rendre capable de mesurer n’importe quel objet. Le résultat final est une « boîte de duplication », où un objet peut être inséré, mesuré, transformé en une série de coordonnées tridimensionnelles, et par la suite reproduit. Plus le nombre de points mesurés au départ a été grand, plus la reproduction de l’objet sera précise.

 Le définisseur mesure 30 cm de diamètre et la hauteur de la boîte mesure 24 cm, soit 80% du rayon de mesure. On pourrait étendre ce système de proportion à volonté, en multipliant ces mesures du facteurs de notre choix, afin de mesurer un objet plus gros.

 La première étape est donc d’insérer un objet dans la boîte et d’utiliser la plaque de mesure afin de noter une série de points judicieux en terme de rayon, d’angle et de distance z. Par la suite, si on imagine ne posséder que cette série de coordonnées, il est possible de reproduire le contour de l’objet à l’aide d’une seconde plaque contenant un tableau de coordonnées polaires. On suspend alors chaque point sur cette plaque à l’aide d’un fil à plomb. Le nuage de points qui en résulte reprend alors le contour de l’objet mesuré au départ.

 Finalement, nous avons souhaité expérimenter avec la notion de projection, de vision et de parallaxe en tentant d’introduire une grille de mesure sur les faces latérales de la boîte. Nous espérions pouvoir obtenir une projection parallèle du contour de l’objet une fois les points suspendus dans l’espace. Cette méthode aurait alors pu fournir l’élévation de des contours de l’objet mesuré.

***

The research project is the result of an experiment using surveying instruments invented in the Renaissance. It is a logical step forward from previous exercises on measuring and mapping.

 Most instruments surveyors used at the time depend on mathematical artifices. Some of them were summarized in the work of Leon Battista Alberti, Ludi Mathematica. In this treatise, he explains various mathematical tricks on the art of measurement. Following the reproduction of the map of Rome as a second exercise for this class, we identified tree points of interest for the final project:

 –        Alberti’s surveys coordinates are independent of the medium on which the map has to be drawn. It is possible for anyone to reproduce this map in any size, assuming Alberti’s instrument is conscientiously reproduced.

–        The other fascinating element is that without knowing it, Alberti used a computational analysis system which is in our opinion not much different than the language of a modern computer.

–        Finally, the instrument used by Alberti to build his map introduces the notion of polar coordinate system applied in the art of measurement. This system defined the starting point of the project.

Alberti's Finitorium, as pictured in De Statua treatise.

Alberti’s Finitorium, as pictured in De Statua treatise.

The project originated from extensive research on various measuring instruments invented by Alberti. We first consulted the Ludi Mathematica treatise to understand how Alberti had transposed the remarkable features of his Rome map into a discrete mathematical array of points. It turns out that Alberti used a large circular instrument placed on the ground in order to establish the angles of points of interest in relation to his location on site (For the Map of Rome, the zero coordinate was the summit of Capitola). During our research, we then examined Alberti’s De Statua, where Alberti describes a second measuring instrument used to survey a standing statue. Alberti confers a proportion system into his instrument by defining that the height of the statue to be measured is to be “6 feet” tall. It then presents the measuring instrument itself, which is called the finitorium. It is an instrument similar to the one used for the map of Rome, except that it now involves a component for its operation in a three-dimensional space. The added component is a plumb line suspended from the radius of the instrument. The radius is 3 feet, each divided into 10 uncia and subdivided into minuta. By using this defined proportional system, one’s can enlarge or reduce the instrument according to the height of the statue to be measured.

 By replicating the instrument described by Alberti, we can understand that it would be possible to divide the outline of any object into spatial coordinates. Having these coordinates at hand, it would also be possible to replicate its outline without the presence of the reference object. Some other research was done in order to understand exactly how this instrument could work in a practical way. To our knowledge, an exact replication of the finitorium instrument has never been attempted. Mathematically, this point-by-point survey of a body is based on cylindrical coordinates, where any point in space is defined by it’s radius, it’s angle in the horizontal plane, and z it’s vertical distance from the horizontal plane where the radius sits. On the other hand, it turns out that the measurement principle invented by Alberti was actually picked up by sculptors to reproduce statues. The principle is as follow: the sculptor positioned two or three major reference points (elbow, knee, etc.) from the center of the vertical axis and thus could know the position of each point relative to the thickness of the material to be cut.

The final project is intended to be an hybridization of these different measurement principles invented by Alberti. We wanted to change the above instrument to make it able to measure any object. The end result is a “replication box”, where an object may be inserted, measured, converted into a series of three-dimensional coordinates, and then reproduced. The greater the number of points is measured, the greater the resolution of the reproduced object will be.

 The Finitorium measures 30 cm in diameter and the height of the box is 24 cm, or 80% of the radius span. In order to measure a larger object, this proportion system can be easily extended. One’s only need to multiply these dimensions by a given factor of choice.

 The first step is to insert an object into the box and use the measuring plate to compute a succession of wisely chosen points in terms of radius, angle and z distance. Subsequently, it is possible to reproduce the contour of the object with a second plate containing a polar array. Each point is to be suspended from the plate with a plumb line, with correct z distance. The resulting points cloud will approximate the contour of the object.

 Finally, I wanted to experiment with the concept of projection and vision, by trying to introduce a measurement grid on the sides of the box. That way, I was hoping to catch a parallel projection of the object’s contour points, once being suspended in space. This method could then provide key elevation contour points of the measured object.

Bibliography

 Académie d’Art de Meudon et des Hauts De Seine, Histoire d’une commande imago pietatis Les procédés de reproduction, [online], http://www.academieart-meudon.fr/wdp/wp-content/uploads/2011/10/Texte-rencontre-Agn%C3%A8s-Bracquemond1.pdf

 Alberti, Leon Battista. Ex ludis rerum mathematicarum, in Williams, Kim, The Mathematical Works of Leon Battista Alberti, Birkhäuser, Berlin, 2010.

 Alberti, Leon Battista, De La Statue et de La Peinture, traduit du Latin en Français par Claudius Popelin, A. Lévy Éditeur, Paris, 1868.

 Carpo, Mario, The Alphabet And The Algorithm, MIT Press, Cambridge, 2011, 169p.

 Grafton, Anthony, Leon Battista Alberti Master Builder Of The Renaissance, Hill and Wang, New-York, 2000, 417p.

 Miller, Naomi, Mapping the City, Continuum, London, 2003, 270p.

 Scaglia, Gustina, Instruments Perfected for measurements of man and statues illustrated in Leon

Battista Alberti’s De Statua, Nuncius, Volume 8, Number 2, 1993, pp.555-596.

 Williams, Kim, The Mathematical Works of Leon Battista Alberti, Birkhäuser, Berlin, 2010.

Device for evacuating water – Christina

In this third phase of projects, I have decided to explore and research Leonardo da Vinci’s machines and inventions.  His varied personal explorations can be classified under the four elements: air, earth, fire and water.  Water was perhaps the most interesting of the subjects, since Leonardo both admired and feared this element, he called it the “driver of nature”.  If water was humanly controlled, then it became the most valuable natural resource.  However, if left unattended, water could be the most powerful destructive force found in nature.

Da Vinci was interested in exploring the potential water offered in producing power from its movement and interested in the problem of swimmers, but these questions also brought to his attention more sinister thoughts.  As mentionned previously, he knew of water’s destructive capabilities and became obsessed with this fact.  He had actually predicted a sort of “end of the world” in terms of a massive flooding that would destroy the entire world and had drawn some sketches of this prediction.  This idea drove him to find ingenious solutions for aiding cities as well as people in case this actually happened.  Also, Leonardo was developping these ideas during a time of war and had thought of several devices that could be useful to the military.These included the breathing tube, the webbed gloves and the floating device.

Image

He also invented a device for walking on water to allow anyone to escape in case of a flood.  The set of instruments was comprised of two poles that were to be used to propel oneself on the surface of the water as well as two large “shoes” that would allow the person to float.

walking on water

As DaVinci was often inspired by nature for his designs, he also looked into science for informing his decision.  The device for walking on water needed consider the Archimedes principle called buoyancy to ensure that one could float on water.  He also looked into the Archimedes screw when he was designing machines for moving water to feed aqueducts for example.

archimedes%20screw

Before DaVinci, Vitruvius also studied the Archimedes screw as a machine to move water and he developped his own machines for moving water.  In his tenth book on architecture he explains principles governing machines and devotes more than a chapter to water.  A large part of what he studied and machines he describes are related to the circular movement of parts working together.  He obviously looked to the heavens for inspiration and guidance.  As the movement of the stars was considered to be ruled by the gods, then these rules had to be followed or mimicked for the design of any machine on earth in order for these devices to be of any validity.

Vitruvius describes in detail a water wheel onto which buckets are attached.  The motion of the water running below the wheel activates the machine and as the wheel is turning the buckets fill with water one by one and are carried around the wheel.  When they reach the top, they spill into a container nearby and this allows for water to be raised from a river to a different level, depending on the diameter of the wheel.  In his book, he also clearly describes how to construct an Archimedes screw.

vitruvius_screw058Noria_VitruviusbwNoriabw

My interest in water devices was also fueled by the fact that I realized that even today, we still do not have adequate buildings or devices to help us when floods afflict certain areas of civilization. After several failed attempts at building my own Archimedes screw for bringing water from one level to another, I designed a different device incorporating many of the concepts elaborated by both Vitruvius and DaVinci. I was inspired by the idea of a conveyor system found in the Archimedes screw where a surface continuously pushes the water upwards and also by the idea of having containers to prevent the loss or leakage of water through the device.  I wanted to develop a machine to evacuate water that could be readily available to anyone, portable and did not need any kind of power in case of flooding and power outage.  My intention was to create a device that could be dismantled and assembled in small simple pieces.  All the necessary pieces would fit into one box, so the machine could be easily stored or even transported.  People could use this device to evacuate water from a flooded basement for example by setting it up to lift water from that lower level, through a window and out to the ground level.

ScanScan0003IMG_8168IMG_8171IMG_8170IMG_8173

 SOURCES

COOPER, MargaretThe Inventions of Leonardo da Vinci. New York : The MacMillan Company, 1965.

GIBBS-SMITH, Charles and REES, Gareth.  The Inventions of Leonardo da Vinci. Oxford : Phaidon, 1978.

VITRUVIUS. (Translated by Morris Hickey Morgan) The Ten Books on Architecture. New York : Dover Publications, Inc. ,1960.

Image sources

Figure 1 – COOPER, MargaretThe Inventions of Leonardo da Vinci. New York : The MacMillan Company, 1965, p.  162.

Figure 2 – GIBBS-SMITH, Charles and REES, Gareth.  The Inventions of Leonardo da Vinci. Oxford : Phaidon, 1978, p. 70.

Figure 3 – www.ecogeek.org/component/content/article/2262

Figure 4 – VITRUVIUS. (Translated by Morris Hickey Morgan) The Ten Books on Architecture. New York : Dover Publications, Inc. ,1960, p.295.

Figure 5 – VITRUVIUS. (Translated by Morris Hickey Morgan) The Ten Books on Architecture. New York : Dover Publications, Inc. ,1960, p.296.

Figure 6 & 7 – http://www.machinerylubrication.com/Read/1294/Noria-history

Deformations / Circulus & Cosmos III

L’objet réalisé s’inspire d’abord des recherches précédentes sur le quadrant, la projection orthographique, ainsi que le torquetum.  Il est également une hybridation entre les projets antérieurs du cours, soit l’astrolabe pour le calcul de la position des astres ainsi que la carte de Rome pour la représentation par coordonnées polaires.

L’instrument consiste à faire un relevé d’un espace, d’un paysage ou d’astres sur 360 degrés en prenant en note des coordonnées de points.  Dans l’exemple suivant, le relevé a été fait dans la salle 102 du bâtiment Macdonald-Harrington.  Le dessin alors obtenu transforme la réalité en la déformant de manière à ce que toute ligne horizontale devienne un arc de cercle et une ligne verticale devienne une ligne axiale.  Une base en bois, horizontale, est divisée en 360 degrés et est alignée de préférence avec les points cardinaux.  Sur cette base, un mat rotatif soutient un quadrant de 90 degrés, avec un pointeur qui peut ainsi déterminer l’angle de vision d’un point déterminé.  Cet angle calculé, on se réfère à une règle graduée sur la base horizontale pour noter le point en question.  Comme cette règle suit exactement la direction du pointeur, elle détermine la coordonnée polaire du point.

Ces deux «coordonnées» peuvent également être notées pour permettre au lecteur de construire/imprimer lui-même sa propre image comme le système utilisé par Alberti pour la carte de Rome.  La hauteur à laquelle l’instrument est placé détermine la hauteur de l’horizon, soit le degré zéro.  Donc, il n’est pas possible de prendre le relevé de ce qu’il y a plus bas que cet horizon sauf en baissant l’instrument.  Autrement, une solution envisageable serait de calculer les angles avec un demi cercle au lieu d’un quadrant, et donc de graduer la règle sur 180 degrés plutôt que 90.  Une des itérations également possible en terme de représentation est d’inverser l’horizon sur le dessin pour la périphérie du cercle plutôt qu’en son centre.

Comme le dessin final obtenu à partir du nouvel instrument est expérimental et inattendu, l’interprétation du dessin l’est également.  L’hypothèse formulée fut de rapprocher ce type de déformation à celles obtenues pour créer des anamorphoses avec des miroirs.  Différentes formes et dimensions de miroirs (cylindriques, coniques et sphériques) ont été reproduits pour “lire” le dessin et mieux comprendre ce type de relevé.  Comme l’instrument est un quart de cercle rotationnant sur 360 degrés, il est logique que le miroir sphérique soit celui qui reflète le dessin en corrigeant sa déformation.

Une attention particulière a également été porté au design et à la conception de l’objet en respectant l’idée d’artisanat et d’utilisation d’outils de mesure plus rudimentaires.  Les proportions ont aussi été calculées, en plus de respecter les formes géométriques pures telles le cercle et le carré.  Le dessin obtenu est inspiré de la technique de cartographie du ciel étoilé, mais pour dessiner l’univers, représenter 360 degrés sur une surface.  La technique systématique et rigoureuse du relevé y confère une certaine subjectivité.  Cependant, il n’y a pas de précision à ce type de dessin, il est difficilement calculable et c’est une vision impossible.  Expérimentale, cette “perspective sphérique” est également une représentation symbolique de l’univers, le cercle étant traditionnellement réservée aux cieux, à la perfection, l’absolu, l’infini, le divin.

* * *

The object made is first based on the previous research on the quadrant, the orthographic projection, and the torquetum. But it is also a hybrid of earlier projects of the course; the astrolabe for the calculation of the position of the stars and the map of Rome for the representation by polar coordinates.

The instrument takes a survey of a space, a landscape or even stars, on 360 degrees by drawing the coordinate points.  The drawing is then transformed by deforming reality so horizontal lines become circular arcs and vertical lines become axial lines.  A horizontal wooden base is divided into 360 degrees and is preferably aligned with the cardinals.  On this basis, a rotary mat supports a 90 degrees quadrant, with a pointer that can determine the angle of view of a given point. This angle calculated, it refers to a ruler on the horizontal base to draw the calculated point.  As this rule follows exactly the direction of the pointer, it determines the polar coordinate of the point.

These two “coordinates” can also be recorded to enable the reader to build / print itself its own image as the system used by Alberti’s map of Rome.  The height at which the instrument is situated determines the height of the horizon, or the zero degree. Therefore, it is not possible to survey below this horizon except by lowering the instrument. Otherwise, a possible solution would be to calculate the angles with a half circle instead of a quadrant, and thus grade the rule with 180 degrees rather than 90.  One of iterations also possible in representation, would be to reverse the horizon of the drawing at the periphery of the circle instead of its center.

Because the final obtained drawing is experimental and unexpected, his interpretation is also unexpected.  The hypothesis was to link this type of deformation to those obtained with mirrored anamorphosis.  Different shapes and sizes of mirrors (cylindrical, conical and spherical) were reproduced to “read” the drawing and understand this type of survey.  Because the instrument is a quarter circle rotating on 360 degrees, it is logical that the spherical mirror is the good reflection which correct the deformation.

A particular care was paid to the design and the realisation of the object, by respecting the idea of ​​craftsmanship and use of more rudimentary measurement tools in order to fully understand it.  The proportions were also calculated, in addition to meet the pure geometric shapes such as the circle and the square.  The drawings obtained were inspired by the cartography technique of the heavens, but in that case to draw from the universe, on 360 degrees, graphically transferred on a surface.  The systematic and rigorous technique confers a subjectivity.  However, there is no precision in that drawing, it is difficult to calculate and it is an impossible vision.  Experimental, this “spherical perspective” is also a symbolic representation of the universe, the circle traditionally reserved for heaven, to perfection, the absolute, the infinite, the divine.

Émélie DT

2012-11-27 20.42.222012-11-29 18.56.08 2012-11-29 18.55.41

mirrors

2012-11-29 18.53.032012-11-28 18.49.152012-11-29 18.53.412012-11-29 18.56.372012-11-28 19.10.332012-11-29 18.53.502012-11-29 18.54.25

Early Modern volvelles from the Bodleian (part I)

First page of a 15th-century guidebook on constructing volvelles, and some Early Modern ones, reproduced here with the kind permission of The Bodleian Libraries, The University of Oxford.

You may click on any one of the images to view a slideshow with further information, including the manuscript and folio numbers. As these are simple snapshots I took of the manuscripts, you are encouraged to contact the Imaging Services of the Bodleian Libraries directly to obtain professional reproductions.

Please note that MS Savile 100, f.8r has also been reproduced on the LUNA site of the Bodleian Libraries. See also the late 15th-century brass equatorium and astrolabe at the Museum of the History of Science at Oxford (inventory #49847).

Yelda Nasifoglu

Early Modern volvelles from the Bodleian (part II)

Illustrations from a late 14th century manuscript by Nicholas of Lynn, reproduced here with the kind permission of The Bodleian Libraries, The University of Oxford.

You may click on any one of the images to view a slideshow with further information, including the manuscript and folio numbers. As these are simple snapshots I took of the manuscripts, you are encouraged to contact the Imaging Services of the Bodleian Libraries directly to obtain professional reproductions. 

Please note that MS Ashmole 789 f.365r has also been produced on the LUNA site of the Bodleian Libraries.

Select sources on Nicholas of Lynn:

Other sources:

Yelda Nasifoglu